Argon-based atmospheric pressure plasma enhances early bone response to rough titanium surfaces.

نویسندگان

  • Paulo G Coelho
  • Gabriela Giro
  • Hellen S Teixeira
  • Charles Marin
  • Lukas Witek
  • Van P Thompson
  • Nick Tovar
  • Nelson R F A Silva
چکیده

This study investigated the effect of an Argon-based atmospheric pressure plasma (APP) surface treatment operated chairside at atmospheric pressure conditions applied immediately prior to dental implant placement in a canine model. Surfaces investigated comprised: rough titanium surface (Ti) and rough titanium surface + Argon-based APP (Ti-Plasma). Surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and chemistry by X-ray photoelectron spectroscopy (XPS). Six adult beagles dogs received two plateau-root form implants (n = 1 each surface) in each radii, providing implants that remained 1 and 3 weeks in vivo. Histometric parameters assessed were bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Statistical analysis was performed by Kruskall-Wallis (95% level of significance) and Dunn's post-hoc test. The XPS analysis showed peaks of Ti, C, and O for the Ti and Ti- Plasma surfaces. Both surfaces presented carbon primarily as hydrocarbon (C-C, C-H) with lower levels of oxidized carbon forms. The Ti-Plasma presented large increase in the Ti (+11%) and O (+16%) elements for the Ti- Plasma group along with a decrease of 23% in surface-adsorbed C content. At 1 week no difference was found in histometric parameters between groups. At 3 weeks significantly higher BIC (>300%) and mean BAFO (>30%) were observed for Ti-Plasma treated surfaces. From a morphologic standpoint, improved interaction between connective tissue was observed at 1 week, likely leading to more uniform and higher bone formation at 3 weeks for the Ti-Plasma treated implants was observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titanium surface modification by using microwave-induced argon plasma in various conditions to enhance osteoblast biocompatibility

BACKGROUND Titanium is a well proven implantable material especially for osseointegratable implants by its biocompatibility and anti-corrosive surface properties. Surface characteristics of the implant play an important role for the evolution of bone tissue of the recipient site. Among the various surface modification methods, plasma treatment is one of the promising methods for enhance biocomp...

متن کامل

[Development and evaluation of a new surface treatment method for titanium alloy implants].

We developed and evaluated a new method of titanium surface treatment for direct bone fixation of implants. This method consists of hydroxyapatite (HA) flame coating onto a porous titanium surface which is arc-sprayed with pure titanium material in argon gas at atmospheric pressure. The surface roughness of the porous layer was 360 μm, Rmax, and showed higher resistance to blast erosion in comp...

متن کامل

Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration

This study assessed the osseointegrative effects of atmospheric pressure plasma (APP) surface treatment for implants in a canine model. Control surfaces were untreated textured titanium (Ti) and calcium phosphate (CaP). Experimental surfaces were their 80-second air-based APP-treated counterparts. Physicochemical characterization was performed to assess topography, surface energy, and chemical ...

متن کامل

Non-thermal atmospheric pressure plasma source design and construction using Argon as the working gas for wound healing

In this research, a non-thermal atmospheric pressure plasma jet device was constructed for skin wound treatment. For this reason, five mice were treated for five consecutive days for 30 s, in a daily manner. Natural wound healing time was monitored and compared with the treated one in 12 consecutive days. The measurement of voltage, current and power waveforms of the plasma source, the optical ...

متن کامل

Raman study of carbon nanotube purification using atmospheric pressure plasma

Multiwalled carbon nanotubes (MWCNTs) were treated with an atmospheric pressure plasma source using an argon/water mixture. Optical emission diagnostics has shown that hydroxyl radicals (OH) were the major reactive species in the plasma. The structural changes in MWCNTs were monitored by micro-Raman spectroscopy. The observed variation of the D and G band intensity ratio and position dispersion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 100 7  شماره 

صفحات  -

تاریخ انتشار 2012